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Specific Cutting Force Coefficients Modeling of End Milling by
Neural Network
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In a high precision vertical machining center, the estimation of cutting forces is important for
many reasons such as prediction of chatter vibration, surface roughness and so on. The cutting
forces are difficult to predict because they are very complex and time variant. In order to predict
the cutting forces of end-milling processes for various cutting conditions, their mathematical
model is important and the model is based on chip load, cutting geometry, and the relationship
between cutting forces and chip loads. Specific cutting force coefficients of the model have been
obtained as interpolation function types by averaging forces of cutting tests. In this paper the
coefficients are obtained by neural network and the results of the conventional method and those
of the proposed method are compared. The results show that the neural network method gives
more correct values than the function type and that in the learning stage as the omitted number
of experimental data increase the average errors increase as well.
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1. Introduction

In milling processes, feedrates or depths of cut
are often limited due to chatter which is undesir­
able vibration or deflections by cutting forces
which are more than allowable (Boothroyd,
1981).

In a high precisision vertical machining center
chatter vibration is easily generated by unbal­
anced masses of rotating parts or variations of
cutting forces. In order to analyze the chatter
characteristics of a machining center, it is neces­
sary to identify the dynamic characteristics of the
machine structure and cutting dynamics (Sridhar
et a!., 1968). Many researches have been proceed-
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ed on dynamic characteristics of structures and
many methods have been studied in order to
predict the cutting forces of milling processes for
various cutting conditions in the field of cutting
dynamics. Constant circular cutting resistances
and cutting forces ratio were used for the machin­
ing by helix end mills (Ber et aI., 1988), and
constant specific cutting pressures and cutting
forces ratio were proposed in the cutting by
straight end mills (Altintas and Ghan, 1992 and
Minis et a!., 1990). Specific cutting pressures for
incremental tangential forces and the ratio of
radial forces to tangential forces were expressed
as exponential functions of average chip thickness
per revolution (Tarng et a!., 1995), and Kim et al.
(1998) 'tried to analyze metal cutting by finite
element analysis. Smith and Tlusty (1993)
introduced a fixed cutting stiffness and considered
the radial forces to be proportional to the tan­
gential forces. A mathematical model was given
based on chip loads, cutting geometries, and the
relation between cutting forces and chip loads
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(Kline et al., 1982). The specific cutting constants

of this model were obtained from the average

cutting forces obtaind from cutting experiments.

In this paper, in order to predict the cutting

forces during end mill cutting in a machining

center a mathematical model is used. The model

is based on the instant chip loads, cutting geome­

tries, and the relation between cutting forces and

chip loads. To predict the cutting forces of end

milling process with the model, cutting experi­

ments were performed under various cutting con­

ditions on a vertical machining center. The spe­

cific cutting force coefficients of the proposed

model is obtained by using neural network

(Rumelhart et aI., 1986, Chong and ParI as, 1997,

Shiotsuka et al., 1993, Demuth and Beale, 1993,

and Asakawa et aI., 1990) from the average

cutting forces obtained from the cutting experi­

ments. A program predicting the cutting forces

under a given cutting condition was developed,

and cutting forces was calculated under various

cutting conditions and compared with experimen­

tal results.
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Fig. 1 Concept of end-milling

where LlFtan is the tangential force component

2. Cutting Dynamics of Milling

The fundamental element of predicting cutting

forces is chip loads which apply to a given cutting

tool as shown in Fig. I. The most familiar form

among the equations proposed for chip thickness

is Eq. (I).

where te is the instantaneous chip thickness, f is

the feed per flute and j3 indicates the angular

position of the tool edge during cutti ng. The total

chip load of an end mill for any instant is the sum

of chip load of each thin disk divided along the

axis of the cutting tool. Cutting force consists of

the tangential cutting force component propor­

tional to chip load and the radial cutting force

component proportional to the tangential cutting

force component (Kline et al., 1982).

j3U, k, t)=-e(t)+~~ (k-l)
IVf

for a small disk of the corresponding edge,

LlFra d is the radial force component for the small

disk, D, is the width of a small disk divided in

axial direction, te is the chip thickness shown in

Eq. (I), K ro and K R are constants obtained from

experiments.

Specific cutting force coefficient K ro varies

corresponding to the chip thickness, but it can be

approximated as shown in Eq. (4) due to weak

non-linearity(Kline et al., 1982).

LlFtu n = [Ctc-O•3JDzte = CDz(fsinj3) 0.7

-:::::KrDzlsinj3 (4)

where C is a temporary proportional constant

used to define specific cutting force coefficient.

The specific cutting force coefficient K» of Eq,

(4) varies according to various cutting conditions

such as feed, depth of cut in radial and axial

directions. Applying to a down milling case by

the tool of radius Rad, number of flute N, and
the helix angle of ahx, the angular position of a

small disk in a flute can be expressed as follows:

(I)

(2)

(3)

te = fsinj3

LlFtan= KroDztc
LlFrad = KRLlFtan
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3. Determination of Specific Cutting
Coefficients

Therefore the cutting forces become functions
of specific cutting force coefficients KR and Kr
and the cutting forces at any time can be esti­
mated by obtaining the coefficients.

Nz Nf

Fx(t) = KrDz!L2 L2{-KRsin
2j3(i, k, t)

i=lk=l

+sinj3(i, k, t)cos{3(i, k, t)} (7a)
Nz Nf

Fy(t) = K rDz!L2 L2 {KRsin{3 ti, k, t)
i=lk=l

• cosj3(i, k, t) +sin2j3(i, k, t)} (7b)
(while j3(i, k, t) is in the cutting range)

Nz NJ

FxW=L2L2{-LlFrad(i, k, t)sinj3(i, k. t)
i=lk=l

+L1.f~an(i, k. t)cosj3(i, k, t)} (6a)
Nz N.f

Fy(t)=L2L2{L1Frad(i, k, t)cosj3(i, k, t)
i=lk=l

+LlFtan(i, k, t)sinj3(i, k, t)} (6b)
(while j3(i, k, t) is in the cutting range)

Substituting Eqs. (3) and (4) into Eq. (6),

ao RDl ADI II ... ADr R + KTI
al RDz ADz h .,. AD~ If KT2

az RD3 AD3 h .. , ADl fl KT3

ag RDn ADn In ... AD~ fl KTn

(9a)

bo RD I ADl II ... ADr R +
KTl

b, RDz ADz Iz ... AD~ Ii KTz
bz RD 3 AD3 13 ... ADl fl KT3

bg RDn ADn In ... AD~ I~ KTn

(9b)

3.2 Specific cutting force coefficients by
neural network

A given cutting condition has various parame­
ters such as tool diameter, radial and axial depths
of cut, feed, and cutting speed. Accordingly, using
three parameters as in Eq. (8) gives some error in

and axial depths of cut by the least square method
(Kline et al., 1982) as in Eq. (8).

K r = a« + alRD + azAD + ad + a4RD

• AD+asf· RD+as/· AD+a7RD2

+asAD2+ aaf2 (8a)

K R = bo+b.Rl) +b2AD+b3/ + b4RD

. AD+bs/· RD+bs/· AD+b7RD2

+ bsA D2 + /)gj2 (8b)

where RD is the radial depth of cut, AD is the
axial depth of cut, I is the feed per flute, and ao
- ag and be>: /)g are coefficients for specific cut­
ting force coefficients. The coefficients ao- agand
bo- bg in Eq. (8) are obtained from the cutting
condition data and KR and K r corresponding to
each cutting condition as shown in Eq. (9).

where [ ] + means a pseudo-inverse matrix.
The above method is indicated as "Least square

method A". Another method where the diameter
of the cutting tool and the surface cutting speed
(which are also parameters in cutting experi­
ments) are added in order to improve the accu­
racy of modeling of the above method A and least
square method is also used for obtaining the
expressions for specific cutting coefficients is in­
dicated as "Least square method B". Both
methods are computer programmed.

(5)( . I)D tanahX+ z-2 z· Rad

where i is the assigned number of a small disk in
the axial direction, t is the lapse of time, and k is
the assigned number of the corresponding flute.
Some angular positions among 13 (i, k, t)'s con­
tribute to cutting forces only when they are in­
cluded in the cutting range. The tangential and
radial cutting forces for small disks are dissolved
into the global coordinates X, Y and the sums of
the forces become the cutting forces in the global
coordinates.

3.1 Specific cutting force coefficients by
least square method

If average cutting forces for a specific cutting
condition (radial and axial depth of cut and feed
for a given cutting tool) is obtained, KR and Kr
can be calculated from an experiment because
average cutting forces are functions of specific
cutting coefficients as shown in Eq. (7). KR and
K» can be obtained for various cases where feed,
radial and axial depths of cut change and expres­
sed as the interpolation function of feed, radial
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3.3 Neural network

Basic structure of neu ral net work is composed

of un it cells ca lled neu ron s which ha ve multiple

inputs and single output (R umelhart et a l., 1986,

Cho ng and Parlos, 1997, Shi otsuka et a l., 1993.

Demuth and Beale , 1993, and Asakawa et al.,

1990) . Intern al state U[' and output OF of each

neuron is expressed using weighti ng coefficients

WL-1•n a nd th reshold 8['. In th is paper a modified

sigmoid function was used as the output function

f i. x) as shown in Eq. (10) instead ofa standard

sigmoid function type.

where a is a constant showi ng a slo pe of each

outp ut function and its va lue is mod ified for

vario us neurons in this paper. A 3-1ayer type

neural net work is used as sho wn in F ig. 2. Error

back propagat ion method was used in learning

the weight ing coefficients and threshold s (Rumel­

hart et al., 1986) . General mod ificat ion meth od o f

weigh ti ng coeffic ients and thresho lds bet ween

n - th layer a nd n - I -th layer is Eq. ( I I) .

Wi~; L.n (t + I ) = WL-,·n(t) + L1 n::" i- l
•
n

( Ila)

8i
n(t + I ) = 8[' (t) +LlO,n ( l i b)

the result of cutti ng force calcula tio n in cases

where other parameters such as tool diameter,

cutting speed and others ar e changed, although

express ing specific cutting force coefficients KR

and K; as function of feed, radial and axial

depths of cut as in Eq. (8) by least square method

are commonly used . Therefore in this paper a new

model ing method using least square method is

proposed , which includes tool d iameter and cut­

ting speed as input parameters. Also, a modeling

method using neural netw ork tha t obtains specific

cutting force coefficients from many pairs of spe­

cific cutting force coefficients which is calculated

from each given cutting conditions is tried . The

input parameters in neural network are tool

di ameter, radial and axial depths of cut , feed, and

cutting speed and the output parameters are spe­

cific cutt ing force coeffic ients in radial and tan­

gent ial d irections, K , and KR •

o
o
o

o
o
o

--0
Teach Signal

Lett ing erro r s igna l in the last output layer ,

N - th layer (here N = 3) , as

aW + I) =a7(t) + Lla7 ; Lla7= -12 1J
n

va;

( 13)

h A wn- l. n - oj dw ere , ~ i .i - -12 ::lWn . I .n an
U J ,t

Ll8['= - et~n ( 12)

J is the est imation function 10 the last output

layer , 12 is a posit ive constant and t represent s the

mod ificat ion step number. Also the slope co n­

stants a's are modified sim ilarly to Eq . ( I I) .

Fig. 2 3 layer neural network

the mod ification volumes of weighting coeffi ­

cients and thresholds between N -th layer and N
- I - th layer becomes as follows:

LlW/";-I .N = _C;O"VOjV-I, Ll8[,=-c;o:v (15)

In thi s paper, 3-layer neural network is used

becau se 2- layer was thought to be inadequate for

descr ib ing so me nonl inear sys tem although it is

simple and does not need much time in learning.

As the number of layers in the neural network

increases so lving and learning the network system

need much time.

The wo rst drawb ack of the error back-prop a­

ga tio n method is th at it may fall in a local

minimum. In order to avo id th is dr awb ack. the

following varia tio ns were added in ide nti fying the

cha ract erist ics of a system in thi s paper. At first.

virt ual impeda nce method (Asakawa et al ., 1990)

( 10)
..,

! (x ) = I+exp(- x / a )
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as given in Eqs. (16) - (17) was used which

considers the modification volumes two times

before each step. Also, slopes of sigmoid output

functions were also included as learning parame­

ters and they were decided by the error back

propagation method.

LlW,;~i-l,nW = - cOfOj'-1 + aILlW,;~il.n U -1)

+a2LlW,;~i-l.n(t-2) (16)

LlerW =-cof+aILlerU-I) +a2LlerU-2)
(17)

Lla7W = - c ~Jn +alLla7(t - I)
aai

+a2Lla7U-2)

4. Cutting Experiments and
Calculation of Specific Cutting

Coefficients

(18)

cutting forces was 9257B manufactured by Kistler.

The end mill was made of cemented carbide and

had two flutes and 30° helix angle, - 7° end

cutting edge angle and 12° radial rake angie. The

testpiece material was SM45C steel and its

components were C (0.44%), Si (0.21%), Mn (0.

72%), P (0.02%), S (0.022%) and Fe (98.586%).

Table I shows the cutting conditions used in the

experiments, where feed was designated in the

rnm/min unit which is usually the input to a

machining center. In calculations feed per flute

was used by a simple conversion with number of

flutes and revolutions per minute. Table 2 shows

samples of average cutting forces obtained in the

case of 16mm end mill diameter, and Table 3

shows samples in the case of 20mm end mill

diameter. The experimental results showed that as

Table 1 Cutting conditions for tests4.1 Cutting experiments
Specific cutting force coefficients were experi­

mentally determined by cutting experiments under

various cutting conditions using a machining

center. The constants in Eq. (8) were obtained by

a program developed using the least square

method. The machining center used in this study

was TNV-40 manufactured by Tongil industries

and the tool dynamometer used for measuring

Diameters of cutter (mm)

Radial depth of cut (mm)

Axial depth of cut (mm)

Feedrate (rnrn/rnin)

Spindle speed (R. P. M.)

16,20

2,4,6,8, 10

12,20

67, 85, 120

480, 600, 900

Table 2 Samples of average cutting forces for each cutting test(tool diameter 16mm)

Radial Axial
Feed

No depth depth RPM
(rum/tooth)

Fx(N) Fy(N)
(mm) (mm)

1 2 20 600 007083 294.2 409.4

2 4 20 600 007083 457.5 763.7

4 8 20 600 0.07083 343.8 1523.

II 4 20 600 0.100 576.9 1035.

12 6 20 600 0.100 577.2 1584

17 8 20 900 0.100 254.1 1369

25 6 12 900 004722 141.7 557.9

26 8 12 900 0.04722 102.1 578.2

32 10 12 600 0.100 -127.4 1694

36 8 12 900 006667 121.8 900.2

37 10 12 900 006667 -254.4 1154.
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Table 3 Samples of average cutting forces for each cutting test (tool diameter 20 mm)

627

Radial Axial
Feed

No depth depth RPM FX(N) Fy(N)
(mm) (mm)

(mrn /tooth)

38 2 12 480 0.06979 171.6 199.3

39 4 12 480 0.06979 389.8 542.5

41 8 12 480 0.06979 190.3 1091.

48 4 12 480 0.08854 447.6 778.4

49 6 12 480 0.08854 480.5 1221.

56 2 20 480 0.06979 393.8 293.3

57 4 20 480 0.06979 557.4 884.4

62 6 20 600 0.05583 435.7 1328.

63 8 20 600 0.05583 353.4 1841.

73 8 20 600 0.07083 542.9 2998.

74 10 20 600 0.07083 231.0 3888.

Table 4 Coefficients of specific cutting forces in
least square method A.

-0.83IEI0, -0.16IEI2, 0.810EI2, 0.205EI5,
a, -0.450EI2, 0.137EI6, -0.12IEI6, 0.619EI3,

-0.207EI4, -0.135EI9

-0.443, 72.7, 46.98, 8590, -2987, -0.804E05,
b, -0.153E06, -907, -577, -0.394E08

the radial depth of cut increases the force in the

table feed direction increases but the force

decreases after a specific value depending on the

cutting condition although the resultant forces

increase continuously. The results also showed

that as the axial depth of cut increases the forces

in three directions, namely in the table feed direc­

tion, the perpendicular direction, and the resul­

tant force direction, increase. The resultant cut­

ting forces are proportional to the sum of the

cutting area. Table 4 shows the constants of

specific cutting force coefficients calculated by the

least square method, and Table 5 shows the

comparisons between the specific cutting force

coefficients obtai ned from cutting experiments

and those obtained by the above constants. Table

6 shows the comparisons between the average

cutting forces obtained from cutting experiments

and those calculated by the constant of specific

cutting force coefficients given in Table 4.

4.2 Specific cutting force coefficients using
neural network

The conventional method using the least square

method like Table 4 makes relatively big errors as

shown in Tables 5 and 6. Therfore, in this study

the least square method which also includes tool

diameter and cutting speed was used, and an

approach which uses neural network for specific

cutting force coefficients is proposed. A 3-layer

network was used in the learning of neural net­

work and five input parameters were used: tool

diameter, radial depth of cut, axial depth of cut,

feedrate, and cutting speed. The output parame­

ters were specific cutting force coefficients of KT

and K R • Initial values of weighting factors

between the neurons in adjacent layers were set by

small random numbers generated in the computer.

Weighting factors, thresholds, and slopes of out­

put functions were learned by varying the number

of neurons in a hidden layer (the second layer).

The variation of learning errors in cases of 25 and

30 neurons in the hidden layer is a thin curve as

shown in Figs. 3 and 4 respectively, and thick

curves in Figs. 3 and 4 show the average errors in

each case respectively. Figure 5 shows the average
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Table 5 Comparisons of specific cutting forces

K T ( X 1010) KR

Sample
No Exper- Calcula- Exper- Calcula-

iment ted iment ted

I 0.4047 0.5324 0.5076 0.4589

2 0.3833 0.5211 0.3593 0.4566

II 0.3572 0.4110 0.3949 0.4387

12 0.3464 0.4194 0.3847 0.4245

25 0.3991 0.4139 0.5054 0.4536

26 0.3231 0.4067 0.4136 0.5064

32 0.3439 0.4337 0.5478 0.5219

36 0.3478 0.4849 0.4616 0.5116

37 0.3274 0.4945 0.7493 0.5563

38 0.4529 0.5233 0.4630 0.3782

39 0.6056 0.5011 0.3512 0.4230

48 0.6156 0.4681 0.4695 0.4284

49 0.6080 0.4624 0.4701 0.4654

57 0.5555 0.5214 0.4209 0.4567

62 0.5984 0.4957 0.5429 0.4574

63 0.6119 0.5018 0.5411 0.4600

73 0.7794 0.5314 0.5548 0.4505

74 0.8107 0.5529 0.5562 0.4468

variation in learning errors versus n umber o f

neuro ns in the hi dden layer. The 74 pairs of teach

signals were used in Figs. 3-5. Table 7 shows the

calculated specific cutting force coefficients and

the average cutting forces using the result of

learning in the case where the number of neurons

in the hidden layer was 30 . This case corresponds

to case number 7 ofNH30 in Table 8. The specific

cutting force coefficients and the cutting forces are

sh own in T a b les 5 and 6. Table 8 shows the

average errors of the average cutting forces for the

cases when the results of Table 4(designated as

LSM A) were, when tool diameter and cutting

speed were added to the least square method

(designated as LSM B) , and when the ne ural

network results where the number of hidden layer

neurons were set as 30 or 35. Each neural network

Table 6 Comparisons of cutting forces

K T ( X 1010) KR
Sample

No Exper- Calcula- Exper- Calcula-
iment ted iment ted

1 294.2 400.3 409.4 513.1

2 457.5 551.7 763.7 1124.

11 576.9 628.6 1035. 1234.

12 577.2 641.8 1584. 1968.

25 141.7 167.7 557.9 560.4

26 102.1 75.0 578.2 761.8

32 - 127.4 -1 16.4 1694. 2116.

36 121.8 121.2 900.2 1286.

37 - 254.4 -133.2 1154. 1629.

38 171 .6 208.0 199.3 209.0

39 389.8 301.1 542.5 479.5

48 447.6 354.9 778.4 571.0

49 480.5 368.4 1221. 925.5

57 557.4 504.7 884.4 856.6

62 435.7 420.6 1328. 1037.

63 353.4 374.7 1841. 1440.

73 542.9 516.8 2998. 1924.

74 231.0 371.6 3888. 2515.

'- :-,----:=----:-----=::----~

Fig. 3 Error trends when No . of neurons in
hidden layer(NH) is 25

result shown in Table 8 is the result of total

experimental data used in the learning of the

neural network. It shows each result for 15 neural

network cases learned independently and the

average of each result. Tables 9 and 10 show the

results of averages of errors for total experiments
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Errors Erro rs

Method N H Cast:
(%) in (%) in

average average
Fy Fx

LSM A - - 33.1 31.3

LSM B - - 15.6 26.8

I 0.05 0.06

2 0.03 0.04

3 0.06 0.07

4 0.03 0.05

5 0.02 0.03

6 0.31 0.33

30 7 0.14 0.14

8 0.08 0.09

9 0.14 0.18

14 0.03 0.05

15 0.09 0.13

Avg. 0.15 0.19
Neural

Netwo rk 1 0.02 0.03

2 0.04 0.05

3 0.12 0.12

4 0.18 0.03

5 0.32 0.36

6 0.15 0.19

35 7 0.02 0.03

8 0.08 0.10

9 0.17 0.23

14 0.19 0.20

15 0.02 0.04

Avg. 0.11 0.13

Table 8 Averages of errors by least square meth od

(LSM) and neural networks.

_._. AVO

- ,...,' ..c:ro
- - .- """......- N'OS . -~

... · 30

...

Error trends when No . of neuron s in
hidden layer (N H) is 30

.- ,~---=---~:----=-----,J.

Fig. 4

Table 7 Calculation results using neural network

Sample
Spec ific cutt ing

Cutting forces (N)
coefficient

No Fx Fy
KTx 1010 KR

I 0.4048 0.5076 294.3 409.2

2 0.3834 0.3594 457.5 763.9

II 0.3574 0.3949 577.2 1036.

12 0.3462 0.3847 576.9 1583.

25 0.3988 0.5057 141.4 557.5

26 0.3234 0.4137 102.1 578.8

32 0.3439 0.5479 - 127.5 1694.

36 0.3476 0.4618 121.5 899.7

37 0.3274 0.7491 -254.2 1154.

38 0.4530 0.4631 171.6 199.4

39 0.6057 0.3512 389.9 542.5

48 0.6157 0.4695 447.6 778.5

49 0.6080 0.4702 480.4 1221.

57 0.5555 0.4209 557.5 884.5

62 0.5985 0.5430 435.6 1328.

63 0.6121 0.5410 353.7 1842.

73 0.7793 0.5549 542.5 2998.

74 0.8108 0.5562 231.1 3888.

.... ~.----::::---~..:-----=---~
No 01_,°10000)

Fig . 5 Error trend s with various No. of neur on s in
hidden layer

after learning where some random data amo ng

the total experimenta l data were excluded in

orde r to check the degree of pred iction in cases

where some of dat a were not learn ed. T ab le 9
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Table 9 Averages of errors by least square method

(LSM) and neural networks for 68 set of

experiments

Errors Errors

Method NH Case
(%) in (%) in

average average
Fy Fx

LSM A - - 33.7 31.4

LSM B - - 16.3 28.4

I 6.24 3.20

2 7.08 23.7

3 5.98 14.9

4 6.25 19.5

5 6.76 21.9

6 5.53 3.74

30 7 6.48 16.7

8 8.75 5.57

9 5.93 6.88

14 7.72 23.8

15 7.06 21.3

Neural Avg. 6.58 15.5

Network I 5.37 5.09

2 5.57 7.77

3 9.57 13.9

4 5.15 7.93

5 6.11 8.25

6 7.60 25.5

35 7 8.64 9.06

8 6.92 4.17

9 9.66 9.63

14 6.36 9.60

15 7.41 15.2

Avg. 6.96 11.4

shows the results in the case where random 6

experiments were excluded in learning, and Table

10 shows the results in the case where random 10

experiments were excluded. Figure 6 shows the

averages of those shown in Tables 8- [0.

Table 10 Averages of errors by [east square method

(LSM) and neural networks for 64 set of

experiments

Errors Errors

Method NH Case
(%) in (%) in

average average
Fy Fx

LSM A - - 32.3 30.7

LSM B - - 15.4 27.5

I 9.45 17.1

2 7.21 18.9

3 13.7 12.8

4 14.8 14.1

5 9.77 21.6

6 6.94 30.9

30 7 4.23 22.7

8 11.4 26.1

9 9.60 14.9

14 15.2 14.4

15 14.6 15.0

Neural Avg. 10.3 20.3

Network I 5.63 19.5

2 13.2 20.3

3 14.2 19.3

4 9.33 16.8

5 15.8 23.5

6 7.48 17.3

35 7 12.0 Il.l

8 5.35 17.3

9 5.25 21.5

14 13.1 16.4

15 13.8 14.3

Avg 11.3 17.9

Figure 6 shows that the case where tool diame­

ter and cutting velocity are added in obtaining

specific cutting force coefficients using the least

square method has smaller errors than the case

where radial depth of cut, axial depth of cut, and
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5. Conclusions
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In this paper, modelling for analysis and pre­

diction of cutting forces in a machining center

was discussed. The model was based on chip

load, cutting geometry, and the relations between

cutting forces and chip load. In order to predict

the cutting forces of end milling processes with

feed are used as input parameters. Also. the case

where specific cutting force coefficients are

obtained using neural networks has smaller errors

than the above two cases. On the other hand F"
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ences. The results of investigation of the average
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neural network show that as the omitted number

of experimental data increases the average errors

increase.
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